Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons.
نویسندگان
چکیده
The properties of neurons participating in masticatory rhythmogenesis are not clearly understood. Neurons within the dorsal trigeminal principal sensory nucleus (dPrV) are potential candidates as components of the masticatory central pattern generator (CPG). The present study examines in detail the ionic mechanisms controlling burst generation in dPrV neurons in rat (postnatal day 8-12) brain stem slices using whole cell and perforated patch-clamp methods. Nominal extracellular Ca(2+) concentration transformed tonic discharge in response to a maintained step pulse of current into rhythmical bursting in 38% of nonbursting neurons. This change in discharge mode was suppressed by riluzole, a persistent Na(+) current (INaP) antagonist. Veratridine, which suppresses the Na(+) channel inactivation mechanism, induced rhythmical bursting in nonbursting neurons in normal artificial cerebrospinal fluid, suggesting that INaP contributes to burst generation. Nominal extracellular Ca(2+) exposed a prominent afterdepolarizing potential (ADP) following a single spike induced by a 3-ms current pulse, which was suppressed, but not completely blocked, by riluzole. Application of BAPTA, a Ca(2+) chelator, intracellularly, or flufenamic acid, a Ca(2+)-activated nonspecific cationic channel (ICAN) antagonist, extracellularly to the bath, suppressed rhythmical bursting and the postspike ADP. Application of drugs to alter Ca(2+) release from endoplasmic reticulum also suppressed bursting. Finally, voltage-clamp methods demonstrated that nominal Ca(2+) facilitated INaP and induced ICAN. These data demonstrate for the first time that the previously observed induction in dPrV neurons of rhythmical bursting in nominal Ca(2+) is mediated by enhancement of INaP and onset of ICAN, which are dependent on intracellular Ca(2+).
منابع مشابه
Participation of a persistent sodium current and calcium - activated 1 non - specific cationic current to burst generation in trigeminal 2 principal sensory neurons
Participation of a persistent sodium current and calcium-activated 1 non-specific cationic current to burst generation in trigeminal 2 principal sensory neurons 3 4 Kentaro Tsuruyama, Chie-Fang Hsiao, and Scott H. Chandler 5 6 Department of Integrative Biology and Physiology, and the Brain Research Institute, 7 University of California at Los Angeles, Los Angeles, CA, 90095, USA 8 9 Running Hea...
متن کاملParticipation of sodium currents in burst generation and control of membrane excitability in mesencephalic trigeminal neurons.
Subthreshold sodium currents are important in sculpting neuronal discharge and have been implicated in production and/or maintenance of subthreshold membrane oscillations and burst generation in mesencephalic trigeminal neurons (Mes V). Moreover, recent data suggest that, in some CNS neurons, resurgent sodium currents contribute to production of high-frequency burst discharge. In the present st...
متن کاملCa-Activated Nonselective Cationic Current (ICAN) in Turtle Motoneurons
Perrier, Jean-François and Jørn Hounsgaard. Ca-activated nonselective cationic current (ICAN) in turtle motoneurons. J. Neurophysiol. 82: 730–735, 1999. The presence of a calcium-activated nonspecific cationic (CAN) current in turtle motoneurons and its involvement in plateau potentials, bistability, and windup was investigated by intracellular recordings in a spinal cord slice preparation. In ...
متن کاملCa(2+)-activated nonselective cationic current (I(CAN)) in turtle motoneurons.
The presence of a calcium-activated nonspecific cationic (CAN) current in turtle motoneurons and its involvement in plateau potentials, bistability, and wind-up was investigated by intracellular recordings in a spinal cord slice preparation. In the presence of tetraethylammonium (TEA) and tetrodotoxin (TTX), calcium action potentials evoked by depolarizing current pulses were always followed by...
متن کاملPersistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.
The functional and biophysical properties of a persistent sodium current (I(NaP)) previously proposed to participate in the generation of subthreshold oscillations and burst discharge in mesencephalic trigeminal sensory neurons (Mes V) were investigated in brain stem slices (rats, p7-p12) using whole cell patch-clamp methods. I(NaP) activated around -76 mV and peaked at -48 mV, with V1/2 of -58...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 110 8 شماره
صفحات -
تاریخ انتشار 2013